EXERCISE-1(A)

Question 1:

Write the probable colour of the following salts.

- (a) Ferrous salts
- (b) Ammonium salts
- (c) Cupric salts
- (d) Calcium salts
- (e) Aluminium Salts

Solution 1:

(a) Ferrous salts : Light green(b) Ammonium salts : Colourless

(c) Cupric salts: Blue

(d) Calcium salts : Colourless(e) Aluminium salts : Colourless

Question 2:

Name:

- (a) a metallic hydroxide soluble in excess of NH₄OH.
- (b) a metallic oxide solube in excess of caustic soda solution.
- (c) a strong alkali
- (d) a weak alkali
- (e) two coloured metal ions
- (f) two coloured metal ions
- (g) a metal that evolves a gas which burns with a pop sound when boiled with alkali solutions.
- (h) two bases which are not alkalis but dissolves in alkalis to yield colourless solutions.
- (j) a coloured cation not a representative element.

Solution 2:

- (a) $Cu(OH)_2$
- (b) ZnO
- (c) NaOH
- (d) NH₄OH
- (e) Na⁺, Ca²⁺
- (f) Fe^{2+} , Mn^{2+}
- (g) Aluminium

- (h) $Zn(OH)_2$ and $Al(OH)_3$
- (i) PbO
- (j) Ammonium ion

Question 3:

Write balanced equations for Q.2 (g) and (i)

Solution 3:

 $2Al + 2NaOH + 2H_2O \rightarrow 2NaAlO_2 + 3H_2$ (Hot and conc.) Sodium meta aluminate (colourless)

PbO + 2NaOH \rightarrow Na₂PbO₂ + H₂O (Yellow) sodium plumbate (colourless, soluble)

Question 4:

What happens when ammonia solution is added first dropwise and then in excess to the following solution:

(i) CuSO₄ (ii) ZnSO₄ (iii) FeCI₃

Write balanced equations for these reactions.

Solution 4:

(i)

 $CuSO_4 + 2NH_4OH \longrightarrow Cu(OH)_2 \downarrow (NH_4)_2 SO_4$

Blue pale blue ppt. colourless is solution

With excess of NH₄OH, ppt dissolves

 $CU(OH)_2 + (NH_4)_2SO_4 + 2NH_4OH \rightarrow [Cu(NH_3)_4]SO_4 + 4H_2O$

Excess Tetrammine

Copper(II) Sulphate

(ii)

 $ZnSO_4 + 2NH_4OH \longrightarrow Zn(OH)_2 + (NH_4)_2SO_4$

Colourless white, gelatinous ppt colourless

With excess of NH₄OH, ppt dissolves

 $Zn(OH)_2 + (NH_4)_2SO_4 + 2NH_4OH \rightarrow [Zn(NH_3)_4]SO_4 + 4H_2O$

(excess) Tetramminezinc(II) Sulphate

(colourless)

(iii)

$$FeCI_3 + 3NH_4OH \longrightarrow Fe(OH)_3 \downarrow + 3NH_4CI$$

Yellow solution reddish brown ppt. colourless in solution

Question 5:

What do you observe when caustic soda solution is added to the following solution, first a little and then in excess:

- (a) FeCI₃
- (b) ZnSO₄
- (c) $Pb(NO_3)_2$
- (d) CuSO₄

Write balanced equations for these reactions.

Solution 5:

(i) $FeCI_3 + 3NaOH \rightarrow Fe(OH)_3 \downarrow 3 NaCI$

Yellow reddish brown, ppt colourless in solution In excess of alkali, the reddish brown ppt, of Fe(OH)₃ remains insoluble

(ii) $ZnSO_4 + 2NaOH \rightarrow Zn(OH)_2 \downarrow + NaSO_4$

Colourless white gelatinous ppt. colourless

In excess of alkali, white gelatinous ppt. of Zn(OH)₂ becomes soluble

$$Zn(OH)_2 + 2NaOH (Excess) \rightarrow Na_2ZnO2 + 2H_2O$$

Sodium zincate (colourless)

(iii) $Pb(NO_3)_2 + 2NaOH \rightarrow Pb(OH)_2 \downarrow + 2NaNO_3$

White ppt (colourless)

In excess of alkali, white precipitate of Pb(OH)₂ becom essoluble:

 $Pb(OH)_2 + 2NaOH(excess) \rightarrow Na_2PbO_2 + 2H_2O$

Sodium plumbate

{colourless}

 $CuSO_4 + 2NaOH \rightarrow Cu(OH)_2 \downarrow + 2NaSO_4$

Blue colourless pale blue ppt. { colourless}

In excess of alkali, pale blue precipitate of Cu(OH)2 is insoluble

Name the chloride of a metal which is soluble in excess of ammonium hydroxide. Write equation

for the same.

Solution 6:

Zinc chloride (ZnCl₂) is soluble in excess of ammonium hydroxide.

 $ZnCI_2 + 2NH_4OH \rightarrow Zn(OH)_2 \downarrow 2NH_4CI$

Colourless White gelatinous ppt.

With excess of NH₄oh ppt dissolves

 $Zn(OH)_2 + 2NH_4CI + 2NH_4OH (excess) \rightarrow [Zn(NH_3)_4]CI_2 + 4H_2O$

Tetram mine zinc (II) Chloride Colourless

Question 7:

On adding dilute ammonia solution to a colourless solution of a salt, a white gelatinous precipitate appears. This precipitate however dissolves on addition of excess of ammonia solution identify (choose from Na, Al, Zn, Pb, Fe)

- (a) Which metal salt solution was used?
- (b) what is the formula of the white gelatinous precipitate obtained?

Solution 7:

- (a) ZnCl₂
- (b) $Zn(OH)_2$

Question 8:

Name:

- (a) a yellow monoxide that dissolves in hot and concentrated caustic alkali
- (b) a white, insoluble oxide that dissolves when fused with caustic soda or caustic potash
- (c) a compound containing zinc in the anion

Solution 8:

- (a) PbO
- (b) ZnO
- (c) K₂ZnO₂

Question 9:

What do you observe when freshly precipitated aluminium hydroxide reacts with caustic soda solution? Give balanced equation.

Solution 9:

(a) (iii)

Aqueous solution of copper sulphate is blue.

(b) (iii)

FeSO₄ + 2NaOH
$$\rightarrow$$
 Fe(OH)₂ + Na₂SO₄
(Dirty green, (Colourless)
gelatinous ppt.)

(c) (iii)

$$Zn + 2NaOH \rightarrow Na_2ZnO_2 + H_2$$

Sodium zincate

(Colourless)

$$Zz Zn + HCl \rightarrow ZnCl_2 + H_2$$

Question 10:

What do you understand by amphoteric oxide Give the balanced equations for the reaction with three different amphoteric oxides with a caustic alkali. Write you observation if any.

Solution 10:

When freshly precipitated aluminum hydroxide reacts with caustic soda solution, whitesalt of sodium meta aluminate is obtained.

$$Al(OH)_3 + NaOH \rightarrow NaAlO_2 + 2H_2O$$

Sodium meta aluminate

Question 11:

Distinguish by adding:

- (a) sodium hydroxide solution and
- (b) Ammonium hydroxide solution to
 - (i) Calcium salt solution and lead salt solution
 - (ii) Lead salt solution and ferrous salt solution
 - (iii) copper salt solution and ferrous salt solution
 - (iv) Fe (II) salt solution and Fe (III) Salt solution
 - (v) Ferrous nitrate and lead nitrate

Solution 11:

(a) Distinguish by adding Sodium hydroxide solution:

(i) $Ca(NO_3)_2 + 2NaOH$ $Ca(OH)_2 + 2NaNO_3$

On adding excess of NaOH, ppt. of Ca (OH)₂ is sparingly soluble.

 $Pb(NO_3)_2 + 2NaOH Pb(OH)_2 + 2NaNO_3$

On adding excess of NaOH, ppt of Pb(OH)₂ is soluble.

(ii) $Pb(NO_3)_2 + 2NaOH Pb(OH)_2 + 2NaNO_3$

On adding excess of NaOH, ppt of Pb(OH)2is soluble.

 $ZnSO_4 + 2NaOH Zn(OH)_2 + Na_2SO_4$

With excess of NaOH, white gelatinous ppt. of Zn (OH)₂ is soluble. So, these two cannot be distinguished by NaOH alone. However white ppt. of Pb (OH)₂ is readily soluble in acetic acid also.

(iii) $CuSO_4 + 2NaOH$ $Cu(OH)_2 + Na_2SO_4$

With excess of NaOH, alkali pale blue ppt of Cu (OH)₂ is insoluble.

 $FeSO_4 + 2NaOH Fe(OH)_2 + Na_2SO_4$

With excess of NaOH, dirty green ppt. of Fe(OH)₂ is insoluble.

(iv) $FeSO_4 + 2NaOH$ $Fe(OH)_2 + NaSO_4$

With excess of NaOH, dirty green ppt of Fe (OH)₂ is insoluble.

 $FeCl_3 + 3NaOH Fe(OH)_3 + 3NaCl$

With excess of NaOH, reddish brown ppt of Fe (OH)₃ is insoluble.

(b) Distinguish by adding Ammonium hydroxide solution:

(i) On addition of NH₄OH to calcium salts no precipitation of Ca (OH)₂ occurs even with addition of excess of NH₄OH because the concentration of OH-ions from ionization of NH₄OH is so low that it cannot precipitate the hydroxide of calcium.

 $Pb(NO_3)_2 + 2 NH_4OH Pb(OH)_2 + 2NH_4NO_3$

On adding excess of NH₄OH, chalky white ppt. of Pb (OH)₂ is insoluble.

(ii) $Pb(NO_3)_2 + 2 NH_4OH Pb(OH)_2 + 2NH_4NO_3$

On adding excess of NH₄OH, chalky white ppt. of Pb(OH)₂ is insoluble.

 $ZnSO_4 + 2NH_4OH \quad Zn(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, white gelatinous ppt. of Zn (OH)₂ is soluble.

(iii) $CuSO_4 + 2NH_4OH \quad Cu(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, pale blue ppt. of Cu (OH)₂ is soluble.

 $FeSO_4 + 2NH_4OH$ $Fe(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, dirty green ppt. of Fe (OH)₂ is insoluble.

(iv) $FeSO_4 + 2NH_4OH Fe(OH)_2 + (NH_4)_2SO_4$

With excess of NH₄OH, dirty green ppt. of Fe (OH)₂ is insoluble.

 $FeCl_3 + 3NH_4OH Fe(OH)_3 + 3NH_4Cl$

With excess of NH₄OH, reddish brown ppt of Fe (OH)₃ is insoluble.

Question 12:

You are provided with two reagent bottles marked A and B. One of which contains NH₄OH solution and the other contains NaOH solution. How will you identify them by a chemical test?

Solution 12:

Reagent bottles A and B can identified by using calcium salts such as Ca(NO₃)₂.

On adding NaOH to Ca (NO₃)₂, Ca (OH) ₂ is precipitated as white precipitate which is sparingly soluble in excess of NaOH.

 $Ca(NO_3)_2 + 2NaOH \rightarrow Ca(OH)_2 + 2NaNO_3$

Whereas, on addition of NH₄OH to calcium salts, no precipitation of Ca(OH)₂ occurs even with addition of excess of NH₄OH because the concentration of OH⁻ions from the ionization of NH₄OH is so low that it cannot precipitate the hydroxide of calcium.

So the reagent bottle which gives white precipitate is NaOH and the other is NH₄OH.

INTEXT QUESTIONS:

Question 1:

What do you understand by the following:

- (i) Analysis
- (ii) Qualitative analysis
- (iii) Reagent
- (iv) Precipitation

Solution 1:

- (i) **Analysis:** The determination of chemical components in a given sample is called analysis.
- (ii) **Qualitative analysis:** The analysis which involves the identification of the unknown substances in a given sample is called qualitative analysis.
- (iii) **Reagent:** A reagent is a substance that reacts with another substance.
- (iv) **Precipitation:** It is the process of formation of an insoluble solid when solutions are mixed. The solid thus formed is called precipitate.

Question 2:

Write the probable colour of the following salts:

- (i) Iron (III) chloride
- (ii) Potassium nitrate

- (iii) Ferrous sulphate
- (iv) Aluminium acetate
- (v) Calcium carbonate

Solution 2:

- (i) Yellow
- (ii) Colourless
- (iii) PaleGreen
- (iv) Colourless
- (v) Colourless

Question 3:

Name the probable cation present in each of the following solution:

- (i) Yellow coloured solution
- (ii) blue coloured solution
- (iii) Light blue coloured solution
- (iv) Pink coloured solution

Solution 3:

- (i) Fe³⁺
- (ii) Cu²⁺
- (iii) Cu⁺²
- (iv) Mn²⁺

Question 4:

Name the metal hydroxides which are:

- (i) Sparingly soluble
- (ii) Insoluble
- (iii) Soluble

In caustic soda solution

Solution 4:

- (i) Ca(OH)₂
- (ii) Fe(OH)₂ and Cu(OH)₂
- (iii) Zn(OH)₂ and Pb(OH)₂

Question 5:

What do you observe when ammonium salt is heated with caustic soda solution? Write the balanced equation.

Solution 5:

When ammonium salt is heated with caustic soda solution, ammonia gas is evolved.

The balance equation is:

$$NH_4Cl + NaOH$$
 Δ $NaCl + H_2O + NH_3$

$$(NH_4)_2SO_4 + 2NaOH$$
 Δ $Na_2SO_4 + 2H_2O + 2NH_3$

Question 6:

How will you distinguish NH₄OH solution from NaOH solution?

Solution 6:

NH₄OH and NaOH can be distinguished by using calcium salts.

For example on adding NaOH to Ca(NO₃)₂, Ca(OH)₂ is obtained as white precipitate which is sparingly soluble in excess of NaOH.

 $Ca(NO_3)_2 + 2NaOH$ $Ca(OH)_2 + 2NaNO_3$

On addition of NH₄OH to calcium salts, no precipitation of Ca(OH)₂ occurs even with the addition of excess of NH₄OH. This is because the concentration of OH⁻ ions from the ionization of NH₄OH is so low that it cannot precipitate the hydroxide of calcium.

Question 7:

Name the metal hydroxides which are:

(i) Insoluble (ii) Soluble.

In ammonium hydroxide solution

Solution 7:

- (i) Fe(OH)₂ and Pb(OH)₂
- (ii) Cu(OH)₂ and Zn(OH)₂

